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Abstract

Derived from the equations of motion, the bispectrum of power
indicates the rate of energy transfer among components of the internal
wave field. This, or any other bispectrum, can be evaluated from weak
resonant interaction theory given the wave spectrum. Using the Garrett
and Munk model of the deep open ocean internal wave spectrum, the
bispectrum of power and the closely related auto-bispectrum of vertical
displacements are evaluated numerically with the intention of providing
an observational test of the weak interaction theory and its predictions.
The resulting levels of the bispectra for typical deep ocean internal
waves are generally too low to be observed with any statistical con-

fidence in an experiment of reasonable length and cost.




I. Introduction

As a first approximation, the oceanic internal wave field may
be regarded as a superposition of independently propagating, dispersive,
linear free waves. The frequency is related to the wave number through
a dispersion relation. The statistics of such a field are Gaussian;
all odd moments are zero (zero mean assumed) and all even moments may
be expressed as products of second moments. Hence the wave field may
be completely described by its three dimensional energy spectrum.

Under some further simplifying assumptions, Garrett and Munk
(1972, 1975), henceforth GM, sought to consﬁruct a model spectrum
consistent with the available observational evidence. Wunsch (1976)
has found that this model describes the spectral shape and general
energy level in much of the ocean; even in regions not far removed from
various (suspected) sources of internal wave energy input. This first
approximation has proved to be both a useful and reliable description
of the space and time scales of the internal wave field.

However, the linear model cannot explain the apparently universal
shape and level of the spectrum over a wide variety éf input mechanisms.
Nor can a linear field transfer energy from the (probably) large input
scales (c.f. Miller 1977, Watson, West, and Cohen 1977, Bell 1977) to the
dissipation occurring at small scales. Although the kinematics of the
wave field are well described by the linear approximation, the dynamics

are contained in the inherent nonlinearity of the motion.




1f the wave amplitude is sufficiently small, one may include the
nonlinear dynamics, yet retain the kinematics of the linear approximation.
The small wave amplitude is expanded in a perturbation series: the
first order corresponds to the linear approximation. At the next order,

a linear equation for the second order motion is forced by products of
two first order waves. If the amplitude is small enough so that the
energy transfer times are long compared to the period, only resonant
waves interact significantly. Because resonance requires the forced
wave to obey the dispersion relation, the second order waves have
precisely the same form as the first order waves. The interaction may
then be regarded as a slow transfer of energy among the first order
"linear" wave components.

McComas and Bretherton (1977), henceforth MB, used weak resonant
interaction theory to investigate the transfer of energy with the GM
model of the internal wave spectrum. They showed that three classés
of interacting triads dominated the spectral energy transfers and appeared
to explain several of the observed features of the universal spectral shape.
McComas (1977) suggested that these particular mechanisms maintained
that shape while transferring emergy to small scale dissipation.

Although these results are appealing and the predicted features are
observed, there has been no direct test of this theory. Furthermore,
at small vertical scales (~10 m), the predicted energy transfers
occur in the order of one period - violating the underlying assumption

of the resonant approach. Such waves seem to interact so strongly, that




frequencies other than the resonant frequencies must be forced, and the .
wave field is more like turbulence than weakly interacting, nearly-linear
waves. As the accuracy of the resonant interaction approach for such
strong interactions is unknown, it would be desirable to have direct
obaservations of nonlinear interactions and spectral energy transfer

to test the limits of the weak interaction concept and its predictions.

As mentioned, a linear dispersive field had Gaussian statistics.
In the presence of nonlinearities however, the waves are no longer
independent and the statistics will not be Gaussian. In particular,
third order moments and their double Fourier transform, bispectra, will
no longer be zero. Hence these quantities serve as measures of the
nonlinearity of the wave field.

In contrast to the routine use of second order spectra, application
of third (and higher) order spectra has been sporadic, confused, and
difficult to interpret, even though the basic mathematical and computational
foundation is replete (c.f. Hasselmann et al. 1963, Haubrich 1965,
Brilliger and Rosenblatt 1967, Hinich and Clay 1968). Most previous
work (Huber et al. 1971 on EEG's, Roden and Bendinger 1973 of various
oceanic variables, Neshyba and Sobey 1975 on ocean internal waves, and
many others) has been confined to producing frequency or one dimensional
wave number bispectra of the record at hand. While this can indicate
which frequencles or wave numbers are nonlinearly coupled, it is an
overly restricted approach. The full potential of bispectra, when
combined with the equations of motion, is to provide a test of nonlinear

dynamics and nonlinear interaction theories.




This paper concerns the use of bispectra to investigate nonlinear
internal wave dynamics in the ocean. It has two main objectives: 1) to
define and evaluate bispectra which can be used to directly observe the
nonlinear coupling causing energy transfer within the internal wave
spectrum, and 2) to use bispectra to test the adequacy of weak interaction
theory as a description of that nonlinear coupling.

Toward the first objective, we show that the time rate of change
of the internal wave energy spectrum at a given wave number and/or
frequency is given by an integral over a certain bispectrum. This
"bispectrum of power' gives the rate of energy input to a given wave
component by nonlinear coupling of two other wave components. If the
required observational records can be obtained, the direct determination
of the waves involved in spectral redistribution and an estimate of
the energy transfer rate is possible. For comparison with the observed
bispectrum that might arise from such an observational program, we
produce the bispectrum of power evaluated from weak resonant interaction
theory. This bispectrum shows strong interactions at the wave numbers
and frequencies corresponding to the interaction mechanisms noted by
MB. If an observed power bispectrum shows similar peaks, it would
provide solid confifmation of those theoretical mechanisms (objective
2).

Any bispectrum provides some measure of nonlimear coupling.
Although the bispectrum of power is the best measure of nonlinear energy

transfer, the required observational records will be difficult to obtain.




Some more readily observed Lagrangian bispectra can be evaluated from
weak interaction theory. It results that the auto-bispectrum of vertical
displacements of a fluid particle is a good test of the elastic scattering
interaction mechanism (MB, McComas 1977) responsible for the equal
intensities of up- and down-going waves (vertically symmetric spectra)
often observed in the deep ocean. This bispectrum is also evaluated
numerically.

Unfortunately, the theoretical results indicate that bispectra
are rather insensitive observational tests of the nonlinear interactions
in the internal wave field in that their low levels require a large .
number of observations to attain statistical confidence. Some speculation
on why this is so is given. The extremely low level of the frequency
auto-bispectrum of vertical displacements is particularly surprising
since Neshyba and Sobey (1975) have reported highly significant levels.

It is suggested that their positive result is due to the method of

sampling, not to strong interactions of the waves themselves.

In the next section, some background on the Aefinition, inter-
pretation, interrelationms, and display of various bispectra is given.
In section 3 the important bispectrum of power is developed directly
from the energy equation for internal waves. Section 4 shows that this
bispectrum or any other Lagrangian bispectrum can be evaluated using

weak resonant interaction theory. In section 5, the bispectrum of




power and the auto-bispectrum of vertical displacement are evaluated
using the result of section 4. Some suggeétions as to an observational
program and a summary are contained in the final section.
2. Higher Order Spectra: Backgound

Higher order spectra, like their second order counterparts, are
useful analytical tools. It is the equations of motion and our knowledge
of the phenomenon and its dynamics which leads to the proper use and
interpretation of any spectral analysis. This section is a brief

background on the definition and interpretation of third order spectra.




2.1 Definitions

As third order spectra are in many ways similar to the familiar
second order spectra, it is helpful to approach the higher order spectra
by analogy. The cross-spectrum of two stationary homogeneous random

functions u(x,t), v(x,t) of position and time is defined as

[+ oo

C (kyw) = — Jf R (r,7) e B E0T4rq, | (2.1)
uv - 4 uv = =
@m 1, s -
where
Ruv(g,f) = <u(x,t)vixtr,ttt)> . (2.2)

The bracket < > denotes ensemble means. The cross—bispectrum of three

stationary homogeneous random functions u(x,t), v(x,t), w(x,t) is

1
B (k'sw'3k”aw") = J”.J’
uvw (Zﬂ)8 )
(2.3)
a1, Vet (I PR T I LRI | s L
Tuvw(z',r',g",r")e ik'rr'-telti-ikTer 1wt dr'dr"dt'dt"
where
T (r',r',r", ") = <ulx,t)vier',thrDulztr, thth)> (2.4)

uvw




The inverse relations to (2.1) and (2.3) are

(oo} ©o

R (r,t) = J---J 6 (k,w)e S T gqy (2.5)
uv = uv - -
and
TuW(E"T"EH’T”) = J...{ BUW(E'a‘U',l_ﬁ"’w")

(2.6)

LN 1 1 1 110, Wy e 1t
eil& E +iw T +1k_- E +l(.0 T dk' dl_g”dw'dw" .

As noted by Hasselmann et al. (1963) the interpretation of these cross-
spectra is more readily apparent in terms of the components dU(k,w) of

a Fourier-Stieltjes representation:

o

u(x,t) = J du(k,w)e

=00

ikextiwt (2.7)

so that
<dU(§',w')dV(§”,w")> =
Guv(g',w')dg'dw' if o' =" and k' = k"

(2.8)

0 if not




and

<dU (k,w)dV(k',w")dW(k",u")> =

i
(@]

B (k',0",k",0")dk"do'dk"de" 1if w'tu'tw =
uvw = - = =
and 1_§'+_l§"+5 =

|
[

0 if not

The cross-spectrum Guv represents the contribution to <uv> from the
product of two Fourier components whose frequencies and wave numbers
add to zero, whereas Buvw represents the contribution to <uvw> from

the product of three Fourier components whose frequencies and wave

numbers add to zero. (The latter condition is not the same as resonance,
because the frequencies are not restricted to satisfy the dispersion
relation. Nonlinearities may force waves at frequencies other than the
natural frequency for the resultant wave number, and (2.9) includés

these forced, non-resonant waves.) If the statistics are not homogeneous

and/or stationary, this interpretation for the bispectrum is not valid.

(2.9)

Those processes which are not homogeneous should use frequency decompositions

at a point, and non-stationary processes should use wave number decompositions

at an instant of time.




2.2 Symmetries:

Under certain conditions third order correlations and their
associated bispectra show certain symmetries similar to those of

second order spectra. If u(x,t), v(x,t), w(x,t) are real,
6 (k,w) = G (-k
uv k,w) = uv(-_,-w) (2.10)

*
B (_15',03',1_&",0)”) = Bu ("k',-w',—l_g”,-w") . (2.11)

uvw vw

For stationary and homogeneous processes
Ruv(g,r) = Rvu(—g,—r) (2.12)
and

TuW(E',T',EH,T”) = Tuwv(_r.",T'l,E',T')

Tvuw(‘E' ,—T' ,£||_£| ,T"—T |)

It

TWU(E"—E"T"-T"_E"—T') (2.13)

vau(E ' _EH )T ! ,_Eu ,"'T”)

TWV(—E"’—T"’E‘—EH’T'—T") .

10




(The first relation in (2.13) is true without stationarity or homogeneity.)

From these relations
Guv(g,w) = Gvu(—g,—w) (2.14)
and

Buvw(li' ,(D' ,&|I,w|l) = Buwv(lﬁ",w",li' ,U)')

B (Kows k" 50")

B (K ow’ s K,0) ' (2.15)

Bwu(l_{,w,l_(" ’mll)

Bwuv(l_(" , m"1_<_, w)

where k = -k'-k" and w = - "
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2.3 Display

Because there are a large number of possible symmetries, a
standard format for display, at least for third order spectra of one
space dimension or time, will prove useful. The following is not unique,
but is relatively simple.

The first task is to choose an order for the placement of the
component records. If all three records u,v,w are different this is
arbitrary. Having chosen say uvw the frequency cross-bispectrum
B vw(w',w") can be displayed in the 2-space (w',w") . See Figure 1.

u

This bispectrum represents the product of Fourier components w' from
record v, uw" fromw , and w = -0' - 0" from u .

Because of the reality condition (2.11) there is a symmetry
about the origin such that Buvw (w',w") is unique in any half plane
of (w',w") . The half plane w' > 0 , octants 1, 2, 7, and 8 of
Fig. 1 is a convenient choice. The entire plane may be reconstructed
by reflection through the origin.

If any two records are the same, i.e. wu, v, u, placing.the

"

odd record first, so that the display frequencies w'y, w come from

the same record, introduces the simple symmetry

t " — " 4 .
Bvuu(w ,w') = Bvuu(w ,u') . (2.16)

Thus, this spectrum is unique in the quarter plane

w' 20 , o'=2 lw"i , (2.17)




octants 1 and 8. With this additional symmetry, the entire plane 1is
obtained by reflecting the unique quarter plane about the folding axes

of Fig. 1, as one would unfold a quartered piece of paper.

If all three records are the same, i.e.. u, u, u the symmetry
1 " . "
Buuu(w sw') Buuu(m,w ) (2.18)
implies uniqueness in octant 1 where w' 2 w'" 2 0 . Unfortunately

no simple folding symmetry is apparent and (2.18) must be used explicitly
to obtain the quarter plane, from which the entire plane can be gained

as before. -

13




2.4 Eulerian versus Lagrangian Bispectra:

Any flow field may be regarded as either a function of time
and fixed position in space or as a function of time and the position
of a particle. The Eulerian and Lagrangian representations are completely
equivalent descriptions of the field, and the choice of either system is

a matter of convenience.

Although at any one point at any given time, a Lagrangian or Eulerian

variable must have precisely the same value, a time history of a Lagrangian
variable is different from the time history of an Eulerian variable, as
they are indeed records of quite different quantities. This raises the
question of what relationship, if any, Eulerian frequency spectra have to
Lagrangian frequency spectra.

An Eulerian variable, QE(§,t), forever at position x can be
related to the Lagrangian variable, QL(§,t), whose initial position was

x through the Lagrangian displacement £ (x,t) by
p &

_ 3Q (x,t)
Q (x:t) = Qp(x,0) - L&L()_(,t)]if—é‘;;—‘+ (2.19)

correct to second order (Phillips, 1966). Clearly, second order time
correlations of Lagrangian and Eulerian variables are equivalent to

second order in the wave amplitude, 1.e.

14




aQ,
<Qpp> = <Q Q> - <ELi a%, L
(2.20)
aQ
L
g

and if the wave motion is of small amplitude, or the statistics nearly
Gaussian, the Eulerian and Lagrangian second order products and their
related spectra are essentially interchangeable.

Unfortunately, the same is not always true for third order

time correlations and frequency bispectra, as

aQ
_L
9X Q QL>

<QpQpQp> = <Q Q; Q> - Li .

(2.21)
BQL BQL

<Q; & >—<QQ
L Liaxi L°L, Bxi

+ e e

Again, if the wave motion is of small amplitude, the two third order
products are nearly equal - unless the statistics are Gaussian to
first order. 1In that case, the first order of the triple product
disappears, making all the terms on the right hand side of (2.21)
comparable in magnitude. Hence, Lagrangian and Eulerian triple

products and their bispectra can be quite different.

15




2.5 Interrelationships:

For a homogeneous and stationary field,

Buvw(w',w") = Jf"fwBuvw(E',g",w',w") dk 'dk" (2.22)

Buvw(E"E") = JT'-JmBuVW(E',E“,w',m") dw'dw" (2.23)

B v (k1 Ky) = F--JmBuW(y,g",m',w”) dkydky dkjdkidwdw,  (2.24)
etcetera where k = (kl’kz’k3) . Any bispectral density of some subset

of arguments is an integral of the full bispectral demnsity Buvw(kf,gf,

w',w'") over the remaining arguments.

Because Lagrangian velocities are related to the associated
Lagrangian displacements through the frequency, any Lagrangian frequency
bispectrum involving velocities can be obtained from the displacement

bispectrum and vice versa, for example
B (w',0") = iw'({w") (iw) B (0',0") . (2.25)

ujuglg £48383

This results because the vertical velocity, Uqs is linearly related to
the vertical displacement 53, so that their Fourier transforms are simply

related by the frequency, i.e.,

16




dUB(w) = 1w ng(w) . (2.26)

The same degeneracy is not true of Eulerian bispectra because an Eulerian
velocity is nonlinearly related to the displacements.

An Eulerian or Lagrangian wave number bispectrum containing
gradients can be related to the corresponding wave number bispectrum

without gradients, e.g.,

B 4y (k'hK") =ik B o K KD (2.27)

- A
u dxj

The only restriction is that the gradient must have the corresponding
wave number as an argument of the bispectral density. Clearly,
frequency bispectra of gradients and wave number bispectra of
velocities cannot be simply related to their respective displacement

spectra.

17




2.6 Interpretation of Bispectra

As second order spectra are harmonic analyses of second moments,
third order spectra are harmonic analyses of third moments. For staﬁionary
and homogeneous fields they each.have‘the simple interpretations in
(2.8) and (2.9). However, bispectra, unlike second order spectra, are
exactly zero at all wave numbers and/or frequencies.if the statistics
are Gaussian (Haubrich 1965). When three wave numbers and/or frequencies
are nonlinearly coupled, the bispectrum has non-zero values at those
wave number and/or frequency points.

What does a particular bispectral value mean? Formally, it is
the contribution from the region Ak'Ak" and/or Aw'Aw" to that particular
triple moment. It identifies those waves which contribute most to that
moment. The significance of that moment must be obtained from the equations
of motion. Waves producing a large bispectral value for one triple
moment may or may not have large bispectral values for another moment.

In general, a given bispectral value may arise in two ways:
either by weak coupling of highly "energetic' waves or by strong
coupling of iow intensity waves. Therefore the bispéctrum itself is

not a good indicator of the degree of coupling.

18
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2.7 Bicoheregce

It has been suggested that the '"bicoherence" defined

by
Covw (k',w', k" 0" 0k, 00", 8K 8w"™) =
4 131 t 1t t " ] "
IBUVW(E',E',M ,u') Ak AK" Aw' Aa" | L 2.28)
[P (k,w)Akbw P_(k",w ) Ak'Aw' P (k",w")Ak”Am"]ﬁ
u - - v - - w - -
where <uu> = J"'J Pu(k,w)dkdw (2.29;

is an appropriate measure of coupling strength (Hinich and Clay, 1968).

It is zero when there is no coupling, but unfortunately it is not independent
of bandwidth (c.f. Hasselmann et al. 1963). However, for a fixed bandwidth
in a given bispectrum of a single process, it should be a measure of the
relative strength of coupling, e.g., waves 1, 2, and 3 are more strongly
coupled than 4, 5 and 6 because 1, 2, and 3 has a larger bispectral

value for the amount of energy contained in those three waves. Computations
from atmospheric and wind-tunnel data, although yielding greatly different
bispectral levels, indicate a rather constant coupling coefficient

(Helland et al 1977A).

The bicohepence C does not integrate like the bispectrum does,




-

t t
'Buvw(w yw'") Aw' Aw"|

Cuv‘,((l)' ,UJ";A(.U' sAw") =
[P (W A" P (w")Aw"' P (m")Aw"]%
u v w

(2.30)

# E' E”Cuvw(k',w',g”,w”;Ak',Aw',Ag”,Aw”)
Thus for internal gravity waves, whose frequency is independent of scale,
strongly coupled small scale waves might not be detected by the bicoherence
defined in (2.30), because the bispectral level of the small scale
interaction would be normalized by the total energy in the frequency
band, not just the muéh smaller energy of only the small scale waves,
The same type of masking could occur for wave number bicoherences
C(k',k";ak",Ak"), which lump the less energetic high frequencies in with
the low frequencies.

In general, the interpretation of bicoherences of the formA(2.3O)
must be made with care. A low value indicates that the energetic scales
are not coupled strongly, but says nothing about the coupling of the low
energy scales. A high value indicates strong coupling within the band,
but does not indicate which scales within the band produce that coupling.

Because the variance of an observed bispectrum is proportional
to the product of the power in each wave band (Rosenblatt and Van Ness
1965), these bicoherences are useful in designing experiments. From
the theoretically determined bispectral level, the length of record
required to reliably observe that level can be estimated from the
bicoherence. Because of possible masking difficulties, this is the

only manner in which bicoherence will be used in this paper.

20
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3. Bispectra and Internal Wave Energy Dynamics

We have seen that spectra show correlations between two frequencies
and/or wave numbers, while bispectra show correlations between three
frequencies and/or wave numbers. Thus, auto-spectra of a stationary and
homogeneous process would indicate that a frequency or wave number is
correlated only with itself. At this level, second order spectra would
seem rather uninformative. But, second order spectra also indicate the
total variance within each band, and we often find certain combinations of
spectra, such as energy, are dynamically revealing. Similarly, third
order spectra, while automatically yielding interesting information on
the nature and strength of any nonlinear coupling, are also important
in nonlinear dynamics and the redistribution (and dissipation) of energy.
In this section, we will show that for stationary and homogeneous processes,
integrals of particular bispectra give the time rate of change of the
energy spectrum. This interpretation is obtained directly from the energy
équation. The approach follows previous treatments of turbulence spectra
(c.f. in Phillips 1966) and bispectral analysis (Lii et al., 1976;

Hellund et al., 1977B).

The equations of motion for an adiabatic, inviscid, incompressible,

uniformly rotating, stratified, Boussinesq fluid are

Ju au,

i i 9 _ :
— —= + 22 _ s, =0 (3.1
ot Y %, * é;jkfjuk o, bd:3 )

3b b 2
8b 9b _ 8 (3.2)
at T Y 2%, N uyo.3




ol 0 (3.3)
h|

p(x,t) = p_ + p(xy) + 0" (x,t) (3.4)

ap(x.) 5 (x,)

_8—-_3- = —(l + 3 )g (3.5)
X3 po

where u(x,t) 1is the velocity perturbation, f 1is the rotation vector,
p(x,t) is the reduced kinematic pressure, b(x,t) is the buoyancy

perturbation, and NZ(XB), the Brunt-Viisdli frequency, is a function of

vertical position only. The basic state is at rest with the mean pressure,

52x3) , in hydrostatic balance.
The energy equation for this motion
3 3
—E(g,t)+—--Fj(=_<,t> = S(x,t) (3.6)

ot 9X.,
J

relates the time rate of change of total energy

E(x,t) = 1% <u,u, + 3= bb > (3.7)
= i1 N2

a divergence of a flux
F.(x,t) = <pu,> (3.8)
J(_ ) PYy

and an energy source term

22
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dup 1 b
= — —— .
S(x,t) <uiuj P 5 buJ o (3.9)

j N 3

= <uiu_ei +l—2bu. -g—b;

jij N J i
aui ou,

where eij =X 5;—-+ 3;l~ is the rate of strain tensor. For imcompressible

i i

flows, this energy source term is equivalent to a divergence of an energy
flux,

F, & t) = Oqu (uu, + L bb) > (3.10)

J J i N
due to self advection.

If the statistics are homogeneous, the time rate of change of
energy at a point is exactly zero, as all fluxes are required to be
independent of position. No energy builds up at a point. There may still
be a linear or nonlinear flux in physical space, but that flux is non-
divergent. Similarly, the nonlinear source term may cause transfer
between wave numbers, but when summed over all wave numbers, this transfer
must be zero. For oceanic internal waves, the assumption of homogeneity
is valid only in the WKBJ limit of scales of motion small compared to the
scale of background inhomogeneity, the vertical variation of the Brunt-
Vdisdld frequency.

The question of stationarity is more difficult. For linear
processes, an initially non-Gaussian field tends rather rapidly to a

Gaussian state (Hasselmann, 1967), in which all third order moments,
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correlations, and spectra are exactly zero. With nonlinearities, third
order moments, whose rate of growth depend on third and fourth order
moments, arise - even from an initially Gaussian distribution. For
infinitely weak nonlinear interaction, where the only contributions come
from resonant interactions, third order moments arising from an
initially Gaussian distribution tend to a stationary value (section 4).
However, stationarity is not possible when the nonlinear interactions
are strong and the frequency interactions are promiscuous. An assumption
of a stationary bispectrum is equivalent to an assumption of weak
nonlinearity.

Bispectra of weakly nonlinear fields are more sensitive to
intermittency (and possible stationarity) than are second order spectra.
Bursts of nonlinear activity are just small perturbations to the other-
wise constant second order spectra which are largely determined by
the Gaussian linear field. But, because the bispectrum reflects
only the nonlinear activity - the Gaussian linear field not contributing
to the bispectrum - fluctuations in nonlinear activity may cause
major changes in the bispectral level. The presence of the linear
field also complicates the determination of the bispectrum, as the
"signal" (the nonlinear coupling) must be extracted from the large

"noise" of the linear field.




when using third order spectra, as in using second order spectra, the
underlying assumptions of stationarity or homogeneity should be carefully
examined.

Granted stationarity on time scales the length of the record
and homogeneity on space scales assumed small compared to the scale of

variation of the Brunt-Vdisdld frequency, then if

ui(x,t) = Jelk.§+lwt du . (k,w)

X ;&

b(x,t) = Jelk‘§+lwt dB (k) | (3.11)
p(x,t) = feﬂf"—‘““t dP(k,0)

we obtain from (3.1)

d

Fre de(-g,—w) + E}zn £, dU_(-k,-w) - 1kde(—E,—w) - 5j3dB(—5,-w)

<]

= - PP " |4 1 " " 1 (A} " 1
f f[ikZdUz(g sty dU (k") + ik dU (ke dU (ke )]

© o

1 " . LTI
REC fg +k)+x + 1(o'+u"+w)t dk'dk"de'de" . (3.12)

Using a similar equation for buoyancy obtained from (3.2), multiplying
each equation appropriately, and combining to obtain the time rate of
change of the energy spectrum of a homogeneous and stationary process

yields
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%t— ﬁ(g’w) = Joo-JRe['S\(l—(-"wv’l-sl"w")]G(Et+kll+k)6(wt+wll+w) dl_{_'dl_("dw'dw"

where
Blew = % {00, (60080, () + 5 @80, dB (k0]
N

is the energy spectrum and

A
S(I_S‘,UJ',I_(",UJ") dE'dE"dw'dw" =

"
( bk, {au G, w)aU, (k5" dU, (K" ,0™)
+ 4B (k,w)dU (k' »u") aB (K", 0™} K'+K"+k = 0
N
if and
-1k} {du, (k,w)dU, (k"0 AU, (k"5 0')
J J w'+u"tw = 0
<
+ 4B (k, ) U (K", u") dB (k' 0"} >
N
L 0 if not

is the bispectrum of power. As in the energy equation (3.6), rotation

has dropped out and for a homogeneous process the flux term

. uj> - ik, 4P (k,0) dU, (~k,w)
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(3.13)

(3.14)

(3.15)

(3.16)




is also zero, as continuity requires

ky 40y (kw) =0 (3.17)

(The velocity and pressure gradient of any one component are always
perpendicular.) Thus, the real part of the bispectrum of power,

§, may be interpreted as the contribution to the rate of change

of the energy spectrum at (k,w) by the nonlinear interaction of

any two waves (k',w') and (k",w"). Under the assumptions of homo-
geneity and stationarity, only those pairs of waves whose wave numbers
and frequencies sum to the wave number and frequency of interest, i.e.
(k,w), make any contribution. The total rate of change of the energy
spectrum at a given wave number and/or frequency is the integral over
all such pairs. (The power bispectrum for internal waves is the same
as for turbulence (Lii et al 1976) except that the effects of buoyancy
have been included and viscosity effects ignored.)

Using continuity it may be shown from (3.13) and (3.15) that

9 -
atE‘J
00  e=00

(3.18)

J---JRe (k' ,w',k",w")] dkde dk'dw' dk"dw" =0

-—C0 -—00

27




and the energy at a point is conserved, as we found before.
A
As might have been guessed directly from (3.15), S 1is the
bispectrum of the nonlinear source term (3.9) and may be alternately

defined from (2.3) using the correlation

Su (_}__‘H—E" , t+'l.'")

i
SR R T R T D ' '
9’ b} b ’ . b
L)U(r ', e, ") Qu, (x,t)u, (xtr',t+1")
= = 1 E PR AETS o
(3.19)
1 o ab(xtr", t+T")
+ =5 b, t)u (et i) — >,
N h|
Substitution into (3.13) results in
SE(k,w) 1 7 LUAKE,T,E,T)COS(E'£+wT) drdt . (3.20)

at (2m)

The time rate of change of the energy spectrum is given by the real
part of the Fourier transform of the correlation N(r,7,r,T) . This
may also be derived directly from the energy equation (3.6). Because
the lags are identical the triple correlation gj“ can be considered a

_ Ju
double correlation between the records ui and uj 5% " The time rate

of change of the energy spectrum may be evaluated either by (3.13) or
(3.20). The bispectrum ) provides more detailed information, giving
the contribution from each set of components, not just the total as

in (3.20).
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. ,
The bispectrum S is composed of twelve separate terms. For
internal gravity waves, the scales of vertical and horizontal velocity

W, U are related to vertical and horizontal space scales H, L by
W_ o2
7 O( ) . (3.21)

The bulk of the internal wave energy is at low frequencies where H/L << 1 .
Thus, the only terms that a priori might be neglected are
oW oW oW H2 U
WU = WW— = W— = 0— ] 0\UU
<L2>- ( Bx)
leaving nine terms of equal magnitude to be evaluated. But, even these
three terms will be important for frequencies near the local Brunt-Vidisdla
frequency, where H/L 1is not small.

To determine g using (3.13) requires records of velocity and
buoyancy suitable for Fourier decomposition in three-dimensional wave
number - even when frequency bispectra are to be computed. If gradients
of velocity and buoyancy can be measured, then 3 may be determined
from (3.19).

Because of limited measurement capabilities, particularly
in the space domain, it is not likely that the full bispectral demnsity
§(§',E",w',w") can be obtained. Rather some integral of the full
bispectral density, such as §(k',k") where k3 is a vertical wave

3

number, or §(w',w") might be obtained. Even these will not be easy,




and a theoretical prediction of such bispectra greatly ajdes the
experimental design as well as subsequent interpretation. The
evaluation of §(k‘,kg) and S(w',w") from weak resonant interaction
theory is given in the following sectionms.

To summarize, we have noted that the time rate of change of
energy at a point is balanced by the divergence of a flux and by a
nonlinear energy source term. If the process is homogeneous, the energy
at a point is constant. (Viscuous and other dissipation has been ignored.)
However, energy may still be transferred within the spectrum. The rate
of change of the energy spectrum of a homogéneous and stationary process
is the Fourler transform of a third order correlation, which is equivalent
to an integral over the corresponding bispectrum. If appropriate records
could be obtained, the rate of change of the energy spectrum due to

nonlinear interaction with two other wave components could be directly

observed through this bispectrum.
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4., Bispectra and Resonant Interaction

1f internal waves are indeed a weakly nonlinear process, the field
may be regarded as a superposition of independently propagating random
waves governed by a linear equation of motion. Frequencies are related
to the wave number by a dispersion relation. This base state has
Gaussian statistics and hence is fully described by its constant three-
dimensional energy spectrum, E(k) . Any bispectrum is exactly zero.

At the next order, motion will be forced by interaction of
two waves of the first order field at sum and difference wave numbers
and frequencies. A resonance occurs for forced waves of the natural
frequency; i.e. those frequencies satisfying the dispersion relation
for the forced wave number. Asymptotically, the only significant energy
transfer occurs between resonant waves (Phillips 1960).

Such nonlinear coupling should be reflected in bispectra. . The
objective of this section is to show that weak nonlinear interaction
of an initially Gaussian, homogeneous field produces a stationary, non-
zero, third order product of Fourier components from which any desired
Lagrangian third order correlation or bispectrum may be produced. In
the next section, the bispectrum of power and the closely related, but
more readily observed, auto-bispectrum of vertical displacements are

evaluated.
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4.1 The Linear Field

As previously noted, the internal wave field can be considered,
to a first approximation, as a superposition of independently propagating
linear waves. The field may then be described by the Lagrangian displace-

ments (Olbers 1976 and McComas 1975)

~8 1(kex-sQ(k)t
o= ] Ja® G e (k* x-s0 (k) £) (4.1)
s=%1 k -3
with wave amplitudes as(g) where the wave number k = (kl’kZ’kB)
has a magnitude |5| and horizontal wave number
Y
2 2
= 4,2
K (kl + kZ) ( )
and
%
N .
Q(k) = 5 ; (4.3)
| k|

molus

[k 1fk
_k - 2
1 SWw

K

)

k ifk
= C4-—§<—k_ + 1
2 8w
K
1

>

= ©

N

) (4.4)

are the dispersion relation and displacement vector, respectively; C

is a complex constant and f 1s the vertical component of Earth's

rotation. Reality of gj(x,t) implies

S = (aw)" (4.5)




where * denotes complex conjugate. For this Gaussian field the

statistics are completely described by the power spectrum

E() = 207, L a () a (k)
~s=t1

where

2
_oaa* 2 2 W
Y = cC (N°-f7) 5 5
- w —-f

(4.6)

(4.7)

So far even this simple description of the internal wave field has not

been obtained, as only models of the fully three-dimensional spectrum

E(k) are presently available,
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. 4.2 Nonlinear resonant interaction

To consider weak nonlinearities, the Lagrangian displacement

field is given by

oLk x-s(k)t) (4.8)

L]

gj(§,t) = z Z as(k,t) G
k

where the wave amplitude a(k,t) is now a function of time. Expanding
a(k,t) in a perturbation series, with ¢ a formal parameter expressing

the weakness of the field,

aS(E,t) = eai(g,t) + azaZ(E,t) + e3a§(5,t) + e (4.9)

with initial conditions

ag(E,O) = 33(5,0) =...=0 . (4.10)
At lowest order
s s

a constant amplitude corresponding to the linear solution (4.1) to

(4.5).
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Following Hasselmann (1966), the second order amplitude is

S = - M S'S"—S S' 1 S" " "
et = 1 L L] - g0 Py o (h0a) (00D

ilsQ(k)-s'Q(k')-s"Q(k'"))t
[e ( e _ g (4.12)
SQ(IS)‘S'Q(I_E‘)"S"Q(&")
where
DS'S"‘S _ S'k'k'ﬂ'(é ")(&—S) s"K"K " (E;S') (é"s)
" - T " _ s t -
i~ 7 R (G ) P )7 o ) B,
ag' as"
+ skik.w(ck.) (Gk") (4.13)
k ,
2 2 3
and m=-ic (N -f") T;TE (4.14)

(McComas 1975).

Consider the third order cross-correlation of any variables

u, v, w for a homogeneous process




<u(x,t)vixrr', tttDwlxt", t+1")> =

LN ] n

s s' ' S T} 1"
w <a (k,t)a (k',t+t')a (K", t+t )>

1=~
1501

\7\:[\/]

il'_(.' .£l+i'lsll ;Ell_islg(l-(-l ) T "’iS"Q (I_S”) T"
d (IS+E'+E")3

e—i[ssz(g)+s'sz(15_')+s"sz(15_")] t (4.15)

The Fourier component ﬁi can be found in terms of @i for whatever
Lagrangian variable u(x,t) represents. For example, if w(x,t) represents
vertical velocity u3(§,t), then ﬁi = isQ(g)(Gi) since u3(§,t) =
%; c3(§,t) . Equation (4.15) is the discreet equivalent to (2.6), so

that the discreet bispectrum of u, v, w 1s given by

s s' s"
<a”(k,t)a (k',t+t')a (k",t+r")>

6 (It +k'™) e—i[sg(g)+s'Q(g')+s"n(g")]t (4.16)

with

= -s'a(k"), o = -s"a (k")

€
1§




At this point, no assumption of stationarity has been made. Introducing
(4.9) into the ensemble average triple product of the wave amplitudes

in (4.16) yields

<a®(k,t)a® (k' t+r)a® (K", t+1)> =

1 1"
e <al(,00a] (',0)a (k",0)>

s s' s .
+ € <a2(1,§,t)au1 (}5_',0)61l (k",0)>

' 1
+ & <al(k,00a; (k',t+c)a] (&",0)>

S S' ] S 1
+ € <al(1§,0)a1 (E ,O)a2 (E S t+HT')>

+ ... . (4.17)

The first term is zero because the first order field is Gaussian.
The next set of terms will not be zero however, as the second order
amplitudes depend on products of first order amplitudes so that these

terms are averages of fourth order products of the first order field.

To this point the development of theoretical bispectra has
followed that in Hasselmann et al. (1963) (with the exception of the
Lagrangian representétion). However, Hasselmann a priori assumed that
the third order statistics that arise due to nonlinear interaction of
an initially Gaussian field will be stationary. This is in general not
true. Bispectra of strongly interacting phenomenon such as turbulence,
arising from an initially Gaussian state, (This does not preclude
stationarity for strongly interacting phenomena: It does indicate
that the assumptions of strict stationarity and "quasi-Gaussianity"

are incompatible for such motions.) will not be stationary. Clearly
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the degree of stationarity will depend upon the weakness of the non-
linearity. For ocean waves, which do not admit quadratic resonant

interactions, strict stationarity is not possible.

For internal weves, which do admit quadratic resonant interactions,
the statistics asymptotically reach stationary values as it can be shown

that in the limit of infinitely weak interactions (4.17) becomes

\l "
lnmit  <a®(k,t)a® (&', t+tV)a’ (K", t+r")>

t >

_ —ire) k"o &") D

8 oYk Yk e T
§(sak)+s'a(k")+s"2 (k")
[sA(K")A(K")+s"A(K")AK)+s A (K" A(K) ] (4.18)

where A(g) = ﬁ(k)/ﬂ(g) is the wave action spectrum. Substituting (4.18)
into (4.16) gives the weak interaction formula for the stationary bispectrum

of anv Lagrangian variables u, v, w
Buvw(ls‘,u)',l_s",w") =

irQ (k) Qk")ak™) -s'-g"-g a~sas'as"
- D_ i U W
80 onYlekl' k' 1$ I.S 1&
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. § (ke "+k") § (0 (k) +s '@ (k" )+s"2 (k") )

(sAGENAR"+s"A(kAK)+s"AKMAK)] (4.19)

Thus the bispectrum of <uvw> is given by an interaction coefficient
times second order products of the action density spectrum. The
advantage of the Lagrangian description and the use of the action
density is that the coefficient is the same for each of the three
spectral product terms. Eulerian bispectra can be generated from
the Eulerian equations of motion, but with considerably more effort
and with less appealing results.

- Hasselmann (1966) showed that further consideration of the

amplitude expansion (4.9) leads to an expression for the time rate

of change of the action spectrum, i.e.,

h( _ g oy o m0GNGNAGYD jos'-s"s|?

ot .15" 1_(" s! g" SQOYKYIS‘Yk_." _I,S'“_lﬂn'l(
§ (it '+k") 8 (sQ (k) +s ' (k" )+s"2 (k"))
(sA(kHARM+s"AGRDA)+s"AKAK)] . (4.20)

Note the remarkable similarity between (4.20) and (4.19). The only

significant difference is the interaction coefficient. Where (4.20)
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2 1 13}
-5 =S =S S,,8 S
, (4.19) has D_)\_pu UYMW

—-— '_ H_
has D_i,_i"_i . This near

equivalence will be exploited later.

The rate of change of the action spectrum is simply related to

the rate of change of the energy spectrum by

_EKE;_ (k) _éﬁkl (4.21)

so that the integrand of (4.20) times Q(k) gives the rate of change of
the energy spectrum at wave number Kk and frequency €(k) by inter-
action of two waves k', s'Q(k) and k", s"Q(k'"). Only those waves
whose wave numbers and frequencies sum to zero make any contribution.
This is precisely the definition of the bispectrum of power of section 3.
Hence. (or it can be shown rigorously) the bispectrum of power arising

from weak interaction is given by

Re [é(lst ,s'Q(k") ’E"’S"Q(k‘_")):l -

Q(lﬁ) TS (k)ﬂgk')g(g)_ ‘D‘;‘S"‘S""S 5(1§+1_(‘A+1§")

R O R, 8 £ OO
8OOY1—(Y1_(_'Y1§| k'-k"-k

(4.22)
§(sQk)+s'Qk")+s"a(k"))

[s&(}g')ﬁ(l_c_")+S"Z\(1g')3(15)-"5'?\(13")3(13)] .
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Given some wave action spectrum, sﬁch as provided by the
GM models, the bispectrum of power or any Lagrangian bispectrum
can be numerically evaluated using (4.22) or (4.19) respectively.
Comparison of the predicted bispectra to the observed bispectra is
a test of the adequacy of weak interaction theory. Production of such

theoretical bispectra is the objective of the next section.

V. Evaluating Theoretical Bispectra

The previous section gave the expression for bispectra of a
weakly interacting random internal wave field. In this section the
bispectrum of power and the auto-bispectrum of Lagrangian vertical
displacements will be evaluated numerically for the GM model of the

internal wave spectrum.




5.1 Frequency Bispectra
5.1.1 The Bispectrum of Power

The full bispectral demnsity g(k’,s',Q(k'),Eﬁ,s"Q(k")) is given
by (4.23). As the frequency w' = s'Q(k') 1is a function of the wave
number alone, the bispectrum of power is a function of the six components
of k', k" . Due to the delta function in frequency, only those waves
which satisfy the frequency resonance conditions have a non-zero demnsity.
Thus, the bispectral density can be reduced to a function of five arguments,
without loss of generality.

At this point the theoretical bispectrum is fairly simple to
evaluate, as only one triad contributes to each point in the 5-dimensional
bispectral density. However the task of observing such a bispectrum,
which would require records in time and two space dimensions, or all
three space dimensions, seems quite hopeless. If a comparison be;ween
theory and observation is to be made, the number of arguments must be
reduced. As bispectra of two arguments in one space dimension or time
seems to be the most readily observed, only frequency or vertical wave

number bispectra will be evaluated.

The reduction of the theoretical bispectra from five arguments
to two requires three integratioms, a considerable task. As the GM
model spectra are horizontally isotropic, an integration in horizontal
direction is trivial, leaving only two integrations to be performed.
The procedure is as follows: the two arguments of the bispectral
density are chosen, two values of the integration domain are selected,

the integrand given by (4.24) is evaluated using the GM model for the
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action spectrum, another point in the integration domain is selected,

and so on. Integration over all the computed values gives the hispectrum

for that particular choice of the two arguments. The procedure is repeated

for another choice of the two arguments until the entire bispectrum is

obtained.

Figure 2 shows the result of such a computation - the frequency
bispectrum of power. Inspection of (3.15) shows that the bispectrum

of power of two arguments can be displayed in a quarter plane with
S(w',w") = Suw",w") (5.1)

(Section 2.3). The interactions of octant 1 can be thought of as a

"sum" reactiomn, i.e.
ak') + a") = (k) - (5.2)

where (k) interacts with two smaller frequencies Qk") and Q(k').

Octant 8 as a '"difference" reaction -
Q") - ") = ak) (5.3)

where (k) interacts with one larger frequency and a larger or smaller

frequency. A wave number bispectrum has the same magnitude relations

for these octants, however, the designation as sum and difference reactions

are not as useful because there is no convention for k 2 0 like

that for Q(k) = 0.

43




In Figure 2 the largest bispectral values are found at the very
lowest frequencies. The region is displayed in greater detail in
Figure 3. The large negative value in the upper left-hand region shows
that energy is being transferred from the frequency band w = 2f - 3f
by interaction with nearly half frequency waves w' = ' = 1f - 1.5f .
As shown by the large positive values in the center of the plot, energy
is also being gained at w = 1.0f - 1.5f by interactions with nearly
twice that frequency (w') and nearly the same frequency (w'"). The
open regions have zero bispectral values because at least one of the
frequencies is less than the local inertial frequency, and no interactions
are possible.

These large transfers out of the frequency band w = 2.0f - 3.0f
and into w = 1.0f - 1.5f , the inertial peak, have been identified as
a parametric subharmonic instability by MB. The waves involved in such
a triad interaction are shown schematically in Figure 4(a). MB also found
that this interaction gave the strongest rate of change for the energy
spectrum, rapidly transferring energy down scale and into near inertial
waves. McComas (1977) has suggested that this is the most effective

mechanism for delivering energy to the small scale dissipation region.

It should be noted that agreement between these bispectral
calculations and the fesults of MB is to be exﬁected, as the bispectrum
of power is merely another way of displaying the same quantity - the
time rate of change of energy. The primary objective is to provide a
test of the theoretical predictions and proposed mechanisms. Thus it is
important to determine the bispectral signature of these mechanisms

and the feasibility of an appropriate observational program.
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The frequency bispectrum of power shows a ridge of high values along
the w' axis for large values of w' . This corresponds to the induced
diffusion interaction of MB, an interaction involving two nearly identical
waves w, w' interacting with a much lower frequency and much smaller
wave number wave «'" as in Fig. 4(b). In such an interaction, wave
action is diffused in wave number space. Because of the particular
shape of the internal wave spectrum represented by the GM models, the
rate of change of action (or energy) of a given wave component is
much smaller than if the spectrum had only a slightly different shape
(McComas 1977). This indicates some kind of interaction equilibrium
in the internal wave field. Such a balance is clearly shown in Fig. 2.
The large negative value in octant 1 has a counterpart positive value in
octant 8. Figure 5 gives sections of the frequency bispectrum for varioeus
values of w . The dominance of the induced diffusion interaction for
the time rate of change of the energy spectrum at- these frequencies is
dramatic. It is also quite apparent that the total result of the inter-

action is much smaller because the contributions from the two octants

nearly cancel. Any small change in the spectrum that disturbs that

near balance would result in a large increase in the transfer rate.

The positive and negative transfers in the two octants indicates
a strong enmergy throughput to lewer frequency. Recall that octant 1, a

"gum" interaction, involves interactions of w with two lower

frequencies w' and w" . The negative value in that region implies

that energy is being lost from w to the nearby w' and much smaller
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w" In the "difference" interaction octant,energy is being gained from

interaction with slightly larger «' and much smaller w'" . Since

the induced diffusion interaction transfers energy primarily between
the two high frequency components (MB), this result indicates a gain
of energy at frequency w from slightly higher frequencies and a nearly
equal loss to lower frequencies. That amounts to a flow through w to
lower frequencies. Its magnitude ranges from approximately 2.5><10—8 J/m3s
at w = 20f to 2.SXIO-7 J/m3s at w = 60f , the same order as Miiller
and Olbers' (1975) estimate of the internal wave dissipation. Furthermore,
that throughput is nearly non-divergent so that the energy in w remains
fairly constant. This result is new, since the procedure of MB was
unable to resolve the direction of the energy flow, and it nicely
supports McComas' (1977) assumption of a flux by this mechanism to a low
frequency, high wave number dissipation. As noted by MB such a flux
implies a gain of energy at the low frequency component, and that gain
is reflected in Fig. 2 for o small and w' % -w'" large.

'The strong interactions identified by MB show highly individualistic

signatures in the frequency bispectrum of power, and the foregoing types

of arguments about energy flux and balances within the spectrum show

that this bispectrum is a potentially powerful indicator of the
nonlinear interaction'and resulting energy traﬁsfer within the wave
spectrum. Obtaining such a bispectrum from observation would be
extremely valuable.

Unfortunately, bispectra are quite difficult to measure

with any reasonable confidence unless the nonlinearities are quite
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strong. For example, Lii et al (1976) required nearly 10,000 estimated
degrees of freedon, e.d.o.f., to obtain minimal confidence for wave
number bispectra of wind tunnel turbulence, presumably a strongly non-
linear phenomenon! As the features of interest for the internal wave
bispectrum require frequency resolution of the order of the inertial
frequency, 1.e., a record length of at least one day, Lii's results
suggest that an experiment of lO4 days is required if the internal

wave nonlinearities are as strong as wind tunnel turbulence! Such an
experiment 1is of course impossible, but even if it were done, such strong
nonlinearities would violate the basic assumption of statistical

stationarity.

The required number of e.d.o.f. for the 95% confidence level
is (Haubrich 1965)

-1
v =4 [Cé(w',w";Aw',Aw”)] (5.4)

where C§ is the bicoherence defined in (2.26) for the bispectrum of power.
An ortler of magnitude estimate of the bicoherence can be obtained

from

lé(w',w")Aw'AwﬂiE
E(w)E(w")S(u")

Cg(w',w";Aw',Aw") Y

(5.5)
T -2
~ [ TINT E(w) S
T E(o') S(u™)
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where S % N2 is the total shear, S(w) is the shear in frequency

band Aw, T is the e-folding time scale for the energy in frequency

INT
band Aw by interaction with frequency bands Aw' and Aw" , and Ty
is the Brunt-Viisdli period. Taking the strong induced diffusion interaction

Aw' = Aw" = 1f, it results within an

with o' = 40f, " = 1.5f, Aw

order of magnitude that

T 2
o(v) ¥ | == (5.6)
T
N
such that for a ten day experiment, T Y 37T i.e. the e-folding

INT N

time of the energy in frequency band Aw due to interaction only with
frequency bands Aw' and Aw" has to be the order of the Brunt-Vais#lid
period. That implies extremely strong nonlinearities!

The squared bicoherence, roughly the inverse of the number of
degrees of freedom required to measure S(w',w"), for a band width of
1f has been computed using (5.5) and is given in Fig. 6. Even the
strong induced diffusion reaction would require one thousand e.d.o.f.!
The strong nonlinearities required to produce an obsefvable bispectrum
with only a few degrees of freedom would probably preclude the required
stationarity. Although the frequency bispectrﬁm of power would be
extremely interesting and valuable, its determination from observation,

at least open ocean observations, is impossible.
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5.1.2 The Frequency Auto-bispectrum of Vertical Displacements

The very low level of the frequency bispectrum of power may
be peculiar to that particular bispectrum. Perhaps some other bispectrum,
which clearly demonstrates the strong interaction mechanisms, would have
an observable level. Neshyba and Sobey (1975) reported highly significant
levels for frequency bispectra of vertical displacements, and they
suggested that the interaction trapping mechanism of Phillips (1968)
was responsible. This mechanism, called elastic scattering by MB,
reflects up-going waves into down-going wavés, and vice versa and
forces the spectrum into vertical symmetry in a time.-the order of one
period and in a vertical distance the order of one wavelength (McComas
1977). A typical elastic scattering triad is shown in Figure 4(c).
As this bispectrum promises to be a good measure of the elastic scattering
mechanisms and observable levels have already been reported, this section
evaluates the frequency auto-bispectrum of Lagrangian vertical displacements.
Any bispectrum arising from weak nonlinear interactions may
be evaluated from (4.19). The auto-bispectrum of veftical displacements
is easier than most as the Fourier component for vertical displacements

has been chosen as unity, i.e.

3) = 1 : (5.7)




so that

] 1 1 n n " =
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(5.8)
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The eimilarity of form between the auto-bispectrum of Lagrangian

PN

vertical displacements and the bispectrum of power S

EARS
not only saves considerable effort in their evaluation, but also suggests
that the much more readily observed vertical displacement bispectrum
might be a good indicator of the strong energy transfer mechanisms.

| A detailed inspection of the form of Bg3£3£3 reveals
that this bispectrum is zero if the spectrum is vertically symmetric.
This results because for every "up" triad there is a "down' triad
that precisely cancels the "up" triad's bispectral value. In a perfectly
vertically symmetric spectrum, this bispectrum is everywhere zero.
A significant non-zero level is therefore an indicatibn of vertical
asymmetry 1in the spectrum.

McComas (1977) has shown that the elastic scattering

mechanism eliminates a 10% perturbation to the vertical symmetry of
the GM spectrum on the order of one period (at the shorter scales) -

a very rapid relaxation. As a vertically symmetric spectrum has no

vertical displacement bispectrum, some asymmetry is required and the
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same 10% perturbation, namely 10% more eneréy in down-going waves and
10% less in up-going waves than specified by the GM model, is used.
Figure 7 shows the resulting frequency auto-bispectrum. It is everywhere
positive because the down-going waves have more energy. Its shape is
considerably more simple than the bispectrum of power. The predominant
feature is the ridge of high values for " small. This corresponds
to the strong interaction of the elastic scattering mechanism.
(Although the induced diffusion interaction has the same frequency
characteristics, it does not appear in this bispectrum because of the
near cancellation by "up" and "down" triads.) A similar ridge was
observed by Neshyba and Sobey (1975). However, the level of their
bispectrum was five orders of magnitude greater than here!

Again one must ask if the predicted level is observable.
Figure 8 shows that this bispectral level is hopelessly low, in
apparent contradiction to Neshyba and Sobey's results. The level
is so low that it is not likely that the discrepancy can be due to
differences in the basic spectrum, even though Neshyba and Sobey's
arctic internal wave spectrum may have been substantially different
from the deep, épen ocean spectrum represented by the GM model.
Rather it is due to the fact that these are not bispectra of the same
quantities! The theoretical prediction is for Lagrangilan vertical
displacements, but the observed bispectrum is taken from records
of undulating step-like layers, and hence is neither an Eulerian or

Lagranglan measurement. It is approximately Eulerian in horizontal
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vertical displacement 63(§,z;t)

a third order correlation between 53,53, and Ei =

position, but neither Lagrangian nor Eulerian in vertical position.
displacement ,53(§,Z;t) by (2.19) so that
<€3(_>g,z;t)53(§,z;t)£3(5,z;t)> =

9E4(X,Z5t)

oxX

<g,(X,2;t)
i Sl
i

£4(X,250)E5(X,256)>

3E (X, Z5t)
i

353(§,Z;t)
<€3(§,Z;t)€3(§,Z;t)£i(§,Z;t) —_—

Bxi

0<g5>

As pointed out in section 2.4, fourth order terms are non—-zero even

when the Lagrangian field is Gaussian.

The fourth order correlations in (5.9) can be considered as

853
i

signal which arises because horizontal gradients of 53 are

, a ""false"

Their

is related to the true Lagrangian vertical

(5.9)
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advected past the horizontally fixed sensor. A large value of Ei 3;2

i
might be expected from high frequency components of 53 (large

horizontal wave number) and low frequency Ei (large displacements).
Such a signal would automatically be correlated with one high frequency
£3 and one low frequency 53 , producing a high bispectral value
precisely where Neshyba and Sobey found their strongest results. In

the opinion of the author, their findings are a result of the kinematics

of the gampling procedure - not the dynamics of the nonlinear internal

wave field.
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5.2 Vertical Wave Number Bispectra

The previous sections found two frequency bispectra which clearly
reflected the energy transfer mechanisms of MB and would have provided
observational tests of these mechanisms had their level been sufficient
to be reliably determined by an observational experiment of reasonable
length. MB found that small scale waves have much shorter e-folding
times than large scale energy containing waves. Although vertical wave
number bispectra will combine all frequencies in one wave number band,
just as the frequency bispectra included all wave number scales in one
frequency band, the stronger nonlinearity of these small scale waves
might produce an observable bispectral.level. For example, consider
the required e.d.o.f. for the induced diffusion interaction where

ké Y k3 is large and kg is small. From (5.5)

2 E(k,)

T
INT S
VA - T (5.10)
m< Ty > E(k3) s(k3)

much as before. However, because k! 1is a small wave number it

3
contributes only a small part of the shear - perhaps only one hundredth
of the total shear - so that for v =10 , TINT = 30 TN : a ten times
slower rate than required for observable frequency bispectra.

If the statistics are stationary, an ensemble may be produced
from vertical profiles taken at different locations and times (assuming
homogeneity and stationarity), or from samples (at least a correlation

time apart) of time histories of vertically separated instruments.
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With the faster interaction times found by MB at the smaller scales, the

vertical wave number bispectrum of power might have observable levels.
Figure 9 shows the theoretical vertical wave number bispectrum

of power. Because of the large range of scales in the internal wave

field, this bispectrum is best displayed on logarithmic axes. In order

to utilize the scaling of the resonance conditions that make

the numerical computation of this bispectrum possible, the vertical

axes 1s not kg but kg/|k§| . The unique quarter plane of the bispectrum

of power now lieé in -1 s kg/|k§| <1 . On such an axis system, the

third wave number is not constant along a line of -1 slope, as on the

linear axes (Figure 1), but, as before, may be determined from

k, + k) + kg = 0 . Finally, each bispectral value has been multiplied

3 3

by kékg so that the plotted bispectral value times the area (20)2
9E (k)
3

dﬂoglo|k§ké | d£°310‘kél is the contribution to —7 dk, for that

area. Triads with waves of similar scale are found at the top of fhe

plot (kg/lkél ~ 1), triads with ké large and kg small are in the center,

and triads with ké nearly —kg and with k3 much smaller are at the bottom.
Note that in this representation the bispectrum is remarkably

constant, indicating that each logarithmic area transfers roughly

comparable amounts of energy. This of course implies that the large

vertical wave numbers are more nonlinear since their energy content is

much lower.
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At least half the area of the plot corresponds to interaction
of triads with widely separated scales (k; v kj 10|k%|) - the parametric
subharmonic instability, and the induced diffusion interactions (Figure
4a and b ). MB showed that |kg/k§] = '"/w' for the induced diffusion
triad, and as frequencies are bounded, the interaction is found only in
a restricted range of .kg/|k§| . The largest positive values in the
upper region and the largest negative values in the lower region (both
for kg/|ké| < 0.1) are a result of the induced diffusion interaction.
This is the opposite set of signs found for the frequency bispectrum
(a throughput to smaller frequency), and usihg similar arguments, implies
a throughput to larger vertical wave numbers. The throughput is
approximately independent of vertical wave number and is of the order
of lXIO_lO Joules/mBS for a bandwidth of 1/20 of a decade. This is
a rather small throughput compared to the Miiller-Olbers' dissipation
estimate of 2 to 8><1O—7 J/m3s and seems to reflect the near balance of
the GM76 model with respect to this mechanism.

For smaller values of kg/lk§|, there is a positive transfer
due to the parametric subharmonic instability into tﬁe large vertical
wave numbers k3 and ké out of k" . These transfers are smaller than
the throughput by the induced diffusion triad, but this interaction is
capable of transferring energy directly from the small wave number
component to the large wave number components and is not the cascading

process of the induced diffusion interaction. Further, the plots
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arbitrarily stop at |k§/k§| £ 0.01, yet for smaller values this interaction
is sti1ll contributing, and one may conclude that this mechanism is an
important energy transfer mechanism. The loss from the small wave number
component of both the induced diffusion interaction and the parametric
instability (the major component) is found at kg/lkél v =1.0 .

Finally we note that there is a ridge of interactions at
k§/|kél = -0.5 corresponding to the elastic scattering interaction.
It does not stand out as a large transfer rate but only a change in
sign of the transfer. The transfer out of the low frequency, double
wave number component is found at kg/|ké| ~ 1.0 and is much smaller
as is appropriate for the much lower frequency wave (MB) .

Figure (10) shows the bicoherence of the vertical wave number
bispectrum of power. Clearly, this bispectrum is not readily observed
either. The strongest bispectral value is associated with the induced
diffusion interaction, requiring more than 103 e.d.o.f. Apparently the
frequency masking within each waveband is more serious than implied by

the simple order of magnitude estimate at the beginning of this section.
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VI. Summary and Remarks on an Observational Program

Bispectra that directly indicate the energy transfer among
components of the internal wave field may be derived from the equations
of motion. The same bispectra can also be evaluated numerically from
weak interaction theory, providing a possible test of that theory and
its prediction of strong interaction mechanisms. However, the computations
indicate that the level of these bispectra require extensive amounts of
data to achieve statistical significance.
The level of the frequency bispectrum and the long time required

to obtain a degree of freedom (1 day) preclﬁdes the feasibility of any
successful observational program. Although the statistically significant
result of Neshyba and Sobey (1975) seems to be explained as a result
of nonhomogeneities of that particular wave field and the way in which
it was sampled, a check on the "unobservable level" prediction for the
frequency bispectrum of vertical displacement from a clean Lagrangian
measurement in the typical open ocean conditions is recommended. Hopefully,
this will be available shortly (M. Briscoe, personal communication).

The level of the vertical wave number bispectrﬁm of power requires
many degrees of freedom for statistical significance, and as one must
wait at least a correlation time before the next sample, is probably no
easier to observe than the frequency bispectrum. In view of the probable
expense and the limited chance for success, a program to obtain this
bispectrum as a limited check of weak interaction theory is not recommended.

In final summary, it seems that bispectra are too insensitive a

test for observing the nonlinear dynamics of the internal wave field.




59

and horizontal gradients of velocity and buoyancy. The last record
presents the greatest difficulty, however a vertical profile of the
horizontal gradient of the horizontal and vertical velocities will also
be quite difficult. No presently available instrument package is capable
of acquiring these records. Some type of acoustic instrument with a
fairly long acoustic path to average out fine structure gradients from
the internal wave gradients is probably required. However, even the
strongest interactions require over 103 samples, and even if the result
varied greatly from the theoretical prediction, that would not be very
surprising as the assumption of '"weak" nonlinearity is clearly violated
at these small scales. In view of the probable expense and the limited
chance of success (any nonstationarity being fatal), a program to obtain
this bispectrum as a limited check of weak interaction theory is not
recommended.

In final summary, bispectra are too insensitive a technique
for observing the nonlinear dynamics of the internmal wave field.
Perhaps more limited and indirect measures of the energy dynamics can be
gathered, such as correlations in ehergy content bet@een portions of the
spectrum or changes in spectral shape during times of energy input or
dissipation. The interpretation of such measures will probably rely
heavily on the theoretical mechanisms and, therefore, may not be clean
tests of the accuracy of these theoretical ideas. It is unfortunate

that the direct bispectral test is not possible.
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Figure 1. Representation of display plane for bispectra.
If the axes are linear, the third frequency is constant along a line
of -1 slope, represented here for a bandwidth Aw . The dashed lines
passing through the origin indicate the "fold lines' mbout which certain

bispectra are symmetric.

Figure 2. (a) The frequency bispectrum of power contoured in
powers of ten in m2/s . Dashed contours indicate negative values.
Thin solid lines represent boundaries outside of which the bispectral
level is zero because one of the frequencies is smaller than f or larger
than N . The dashed pattern indicates the symmetry fold lines.
(b) A three dimension representation of the top half of (a) with symmetry
about the fold line, looking toward the origin with viewing angle I.
The vertical axis is logarithmic. (c) A three dimensional representation
of the bottom half of (a) with symmetry about the fold line, looking

toward the origin with viewing angle II.

Figure 3. Detail on the region near the origin of Figure 2
showing the transfers into the inertial band 1 S w/f £ 2 out of the
band 2 £ w/f S 4 . The representation is rotated 45%9 from the previous
figure so that lines of constant w are horizontal. The numbers at

the corners represent points in (u', w'') space.

Figure 4. Schematic representation of the wave number and frequency
characteristics of resonant triads in the (a) parametric subharmonic

instability (b) induced diffusion and (c) elastic scattering interactions.




Figure 5. Sections of the frequency bispectrum of power along
(a) AA' for w/f = éO, (b) BB' for w/f = 4O,Vand (c) cc' for w/f = 60.

Fiqure 6. Contour plot of the squared bicoherence for the
frequency bispectrum of power. Only the upper octant is shown.

Figure 7. Contour plot of the frequency auto-bispectrum of
Lagrangian vertical displacements in m3sz. Only the unique octant
is shown.

Figure 8. Contour plot of the squared bicoherence of the
frequency auto-bispectrum of Lagrangian vertical displacements.

Figure 9. Contour plot of the vertical wave number bispectrum
of power times kiki in m?2/s2. The actual volume under the plot gives

JE (k3)
the total contribution to 3 O3

Figure 10. Contour plot of the squared bicoherence of the

vertical wave number bispectrum of power.
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Figure 2a
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